Thread Rating:
  • 1 Vote(s) - 5 Average
  • 1
  • 2
  • 3
  • 4
  • 5
Have Israeli scientists found a cure for cancer?
#1
Wouldn't that be wonderful news?  tinybiggrin

I've seen reports from inside lab workers who said the cure was found decades ago, but Big Pharma wouldn't let it out; treating cancer is a main source of their income. Also, if a cure was found many scientists would be out of a job for "looking for a cure".

I wonder if this will make it to the main stream medicine worldwide, or will some hot shot step in and murder the scientists making this claim? It's what they seem to do in cases like this.

[Image: 434955]

Quote:A small team of Israeli scientists think they might have found the first complete cure for cancer.

“We believe we will offer in a year’s time a complete cure for cancer,” said Dan Aridor, of a new treatment being developed by his company, Accelerated Evolution Biotechnologies Ltd. (AEBi), which was founded in 2000 in the ITEK incubator in the Weizmann Science Park. AEBi developed the SoAP platform, which provides functional leads to very difficult targets.
“Our cancer cure will be effective from day one, will last a duration of a few weeks and will have no or minimal side-effects at a much lower cost than most other treatments on the market,” Aridor said. “Our solution will be both generic and personal.”

[Image: 434904]Dr. Ilan Moran (Courtesy)


It sounds fantastical, especially considering that an estimated 18.1 million new cancer cases are diagnosed worldwide each year, according to reports by the International Agency for Research on Cancer. Further, every sixth death in the world is due to cancer, making it the second leading cause of death (second only to cardiovascular disease).

Aridor, chairman of the board of AEBi and CEO Dr. Ilan Morad, say their treatment, which they call MuTaTo (multi-target toxin) is essentially on the scale of a cancer antibiotic – a disruption technology of the highest order.

The potentially game-changing anti-cancer drug is based on SoAP technology, which belongs to the phage display group of technologies. It involves the introduction of DNA coding for a protein, such as an antibody, into a bacteriophage – a virus that infects bacteria. That protein is then displayed on the surface of the phage. Researchers can use these protein-displaying phages to screen for interactions with other proteins, DNA sequences and small molecules.

In 2018, a team of scientists won the Nobel Prize for their work on phage display in the directed evolution of new proteins – in particular, for the production of antibody therapeutics.

AEBi is doing something similar but with peptides, compounds of two or more amino acids linked in a chain. According to Morad, peptides have several advantages over antibodies, including that they are smaller, cheaper, and easier to produce and regulate.

When the company first started, Morad said, “We were doing what everyone else was doing, trying to discover individual novel peptides for specific cancers.” But shortly thereafter, Morad and his colleague, Dr. Hanan Itzhaki, decided they wanted to do something bigger.

To get started, Morad said they had to identify why other cancer-killing drugs and treatments don’t work or eventually fail. Then, they found a way to counter that effect.

For starters, most anti-cancer drugs attack a specific target on or in the cancer cell, he explained. Inhibiting the target usually affects a physiological pathway that promotes cancer. Mutations in the targets – or downstream in their physiological pathways – could make the targets not relevant to the cancer nature of the cell, and hence the drug attacking it is rendered ineffective.

In contrast, MuTaTo is using a combination of several cancer-targeting peptides for each cancer cell at the same time, combined with a strong peptide toxin that would kill cancer cells specifically. By using at least three targeting peptides on the same structure with a strong toxin, Morad said, “we made sure that the treatment will not be affected by mutations; cancer cells can mutate in such a way that targeted receptors are dropped by the cancer.”

“The probability of having multiple mutations that would modify all targeted receptors simultaneously decreases dramatically with the number of targets used,” Morad continued. “Instead of attacking receptors one at a time, we attack receptors three at a time – not even cancer can mutate three receptors at the same time.”

Furthermore, many cancer cells activate detoxification mechanisms when in stress from drugs. The cells pump out the drugs or modify them to be non-functional. But Morad said detoxification takes time. When the toxin is strong, it has a high probability of killing the cancer cell before detoxification occurs, which is what he is banking on.
Read the full article


Forum Jump:


Users browsing this thread: 1 Guest(s)