Thread Rating:
  • 1 Vote(s) - 5 Average
  • 1
  • 2
  • 3
  • 4
  • 5
Nano stuff
#1
OK first the advertisement :



Now an articles about smart dust https://www.nanowerk.com/smartdust.php

Quote:
 
What is smart dust and how is it used?
Imagine a cloud of sensors, each the size of a grain of sand or even smaller, blown aloft by hurricane winds and relaying data on the storm to weather stations below. Picture an invisible sensor network embedded into a smart city’s roads to monitor traffic, road surface damage and identify available parking spaces – all in real time. Or billions of nanosensors distributed over forests and other areas with fire hazards to detect a fire at its very beginning. Or envision programmable smart dust that triggers an alarm signal when invisible microcracks are detected in a turbine blade.
Smart dust refers to wireless networks of sub-millimeter-scale autonomous computing and sensing platforms not larger than a grain of sand. Smart dust senses and records data about its environment such as light, temperature, sound, presence of toxins or vibrations, and transmits that data wirelessly to larger computer systems.
Smart dust is a vision of the networked future where intelligent network of trillions of miniscule sensors continuously feel, taste, smell, see, and hear what is going on in their surrounding environment, communicate with each other and exchange information. Smart dust networks are the ultimate Internet-of-Things (IoT) devices.
Smart dust is revolutionary because the sensors are small enough to be put anywhere, even in narrow and difficult areas. Another huge advantage is that these devices work without any human intervention as they are pre-programmed and, notwithstanding their tiny size, have their own power supply.
This technology is expected to not only monitor building controls, pipelines, factory equipment and drug-making processes, but it will also lead to ubiquitous autonomous artificial intelligent computation near the end user, such as authentication, medical procedures and health care monitoring, sensing and tracking, industrial and supply chain monitoring, and defense applications.
Although smart dust devices are not quite in dust-size territory, researchers hope to shrink these devices to the size of a speck of dust via nanotechnology.
To be economically feasible, such single-use devices have to be cheap (we are talking pennies or even fractions of a penny), even cheaper than the radio-frequency identification tags currently used to track the inventory of warehouses, for example.
How does smart dust work and what does it do?
Smart dust networks contain nodes (called ‘mote’) that combine sensing, computing, wireless communication capabilities and autonomous power supply in a tiny package with a volume of few cubic millimeters or even less.
Smart dust is based on microelectromechanical systems, or MEMS. MEMS consist of any combination of mechanical (levers, springs, membranes, etc.) and electrical (resistors, capacitors, inductors, etc.) components to work as sensors or actuators. In the future, as fabrication technologies advance, this will shrink further down in size to NEMS – nanoelectromechanical systems.
Motes are constructed using conventional silicon microfabrication techniques and can remain suspended in an environment similar to dust (hence the name).
[Image: friction3.jpg]
A mite, less than 1 mm in size, approaching a microscale gear chain. (Image: Sandia National Laboratories)
Each mote can be left unattended to collect environmental data such as light, temperature, pressure, vibrations, the existence of toxins, etc., and transmit this data wirelessly to larger, remote computer systems – or, depending on the mote's computing power, processes it directly at the point of data collection.
For instance, in an industrial setting, smart dust sensors relay signals back to a command computer, which then compiles the data to give feedback to plant managers. Or the results could trigger an automatic response, such as turning down a building's temperature or reducing the flow of water.
Another example is DARPA's SHIELD program that plans to use microscale chips to track and authenticate the supply chain of computer chips for defense applications. The goal is to eliminate counterfeit integrated circuits from the electronics supply chain by making counterfeiting too complex and time-consuming to be cost effective. SHIELD aims to combine NSA-level encryption, sensors, near-field power and communications into a tiny chip capable of being inserted into the packaging of an integrated circuit.

See linked article for the rest !
https://news.berkeley.edu/2016/08/03/spr...ceuticals/
Quote:Sprinkling of neural dust opens door to electroceuticals

UC Berkeley engineers have built the first dust-sized, wireless sensors that can be implanted in the body, bringing closer the day when a Fitbit-like device could monitor internal nerves, muscles or organs in real time.
Wireless, batteryless implantable sensors could improve brain control of prosthetics, avoiding wires that go through the skull. (UC Berkeley video by Roxanne Makasdjian and Stephen McNally)
Because these batteryless sensors could also be used to stimulate nerves and muscles, the technology also opens the door to “electroceuticals” to treat disorders such as epilepsy or to stimulate the immune system or tamp down inflammation.
The so-called neural dust, which the team implanted in the muscles and peripheral nerves of rats, is unique in that ultrasound is used both to power and read out the measurements. Ultrasound technology is already well-developed for hospital use, and ultrasound vibrations can penetrate nearly anywhere in the body, unlike radio waves, the researchers say.
“I think the long-term prospects for neural dust are not only within nerves and the brain, but much broader,“ said Michel Maharbiz, an associate professor of electrical engineering and computer sciences and one of the study’s two main authors. “Having access to in-body telemetry has never been possible because there has been no way to put something supertiny superdeep. But now I can take a speck of nothing and park it next to a nerve or organ, your GI tract or a muscle, and read out the data.“
[Image: nervemote750-410x273.jpg]
The sensor, 3 millimeters long and 1×1 millimeters in cross section, attached to a nerve fiber in a rat. Once implanted, the batteryless sensor is powered and the data read out by ultrasound. (Ryan Neely photo)
Maharbiz, neuroscientist Jose Carmena, a professor of electrical engineering and computer sciences and a member of the Helen Wills Neuroscience Institute, and their colleagues will report their findings in the August 3 issue of the journal Neuron.
The sensors, which the researchers have already shrunk to a 1 millimeter cube – about the size of a large grain of sand – contain a piezoelectric crystal that converts ultrasound vibrations from outside the body into electricity to power a tiny, on-board transistor that is in contact with a nerve or muscle fiber. A voltage spike in the fiber alters the circuit and the vibration of the crystal, which changes the echo detected by the ultrasound receiver, typically the same device that generates the vibrations. The slight change, called backscatter, allows them to determine the voltage.
Motes sprinkled thoughout the body

In their experiment, the UC Berkeley team powered up the passive sensors every 100 microseconds with six 540-nanosecond ultrasound pulses, which gave them a continual, real-time readout. They coated the first-generation motes – 3 millimeters long, 1 millimeter high and 4/5 millimeter thick – with surgical-grade epoxy, but they are currently building motes from biocompatible thin films which would potentially last in the body without degradation for a decade or more.
[Image: fingertipmote750-410x273.jpg]
The sensor mote contains a piezoelectric crystal (silver cube) plus a simple electronic circuit that responds to the voltage across two electrodes to alter the backscatter from ultrasound pulses produced by a transducer outside the body. The voltage across the electrodes can be determined by analyzing the ultrasound backscatter. (Ryan Neely photo)
While the experiments so far have involved the peripheral nervous system and muscles, the neural dust motes could work equally well in the central nervous system and brain to control prosthetics, the researchers say. Today’s implantable electrodes degrade within 1 to 2 years, and all connect to wires that pass through holes in the skull. Wireless sensors – dozens to a hundred – could be sealed in, avoiding infection and unwanted movement of the electrodes.
“The original goal of the neural dust project was to imagine the next generation of brain-machine interfaces, and to make it a viable clinical technology,” said neuroscience graduate student Ryan Neely. “If a paraplegic wants to control a computer or a robotic arm, you would just implant this electrode in the brain and it would last essentially a lifetime.”

Again see Linked article for the rest !
Since this stuff is being reported on you gotta wonder what they really have that is even better at doing their bidding ?
#2
(02-07-2022, 07:50 AM)727Sky Wrote: OK first the advertisement :



Now an articles about smart dust https://www.nanowerk.com/smartdust.php

Quote:
 
What is smart dust and how is it used?
Imagine a cloud of sensors, each the size of a grain of sand or even smaller, blown aloft by hurricane winds and relaying data on the storm to weather stations below. Picture an invisible sensor network embedded into a smart city’s roads to monitor traffic, road surface damage and identify available parking spaces – all in real time. Or billions of nanosensors distributed over forests and other areas with fire hazards to detect a fire at its very beginning. Or envision programmable smart dust that triggers an alarm signal when invisible microcracks are detected in a turbine blade.
Smart dust refers to wireless networks of sub-millimeter-scale autonomous computing and sensing platforms not larger than a grain of sand. Smart dust senses and records data about its environment such as light, temperature, sound, presence of toxins or vibrations, and transmits that data wirelessly to larger computer systems.
Smart dust is a vision of the networked future where intelligent network of trillions of miniscule sensors continuously feel, taste, smell, see, and hear what is going on in their surrounding environment, communicate with each other and exchange information. Smart dust networks are the ultimate Internet-of-Things (IoT) devices.
Smart dust is revolutionary because the sensors are small enough to be put anywhere, even in narrow and difficult areas. Another huge advantage is that these devices work without any human intervention as they are pre-programmed and, notwithstanding their tiny size, have their own power supply.
This technology is expected to not only monitor building controls, pipelines, factory equipment and drug-making processes, but it will also lead to ubiquitous autonomous artificial intelligent computation near the end user, such as authentication, medical procedures and health care monitoring, sensing and tracking, industrial and supply chain monitoring, and defense applications.
Although smart dust devices are not quite in dust-size territory, researchers hope to shrink these devices to the size of a speck of dust via nanotechnology.
To be economically feasible, such single-use devices have to be cheap (we are talking pennies or even fractions of a penny), even cheaper than the radio-frequency identification tags currently used to track the inventory of warehouses, for example.
How does smart dust work and what does it do?
Smart dust networks contain nodes (called ‘mote’) that combine sensing, computing, wireless communication capabilities and autonomous power supply in a tiny package with a volume of few cubic millimeters or even less.
Smart dust is based on microelectromechanical systems, or MEMS. MEMS consist of any combination of mechanical (levers, springs, membranes, etc.) and electrical (resistors, capacitors, inductors, etc.) components to work as sensors or actuators. In the future, as fabrication technologies advance, this will shrink further down in size to NEMS – nanoelectromechanical systems.
Motes are constructed using conventional silicon microfabrication techniques and can remain suspended in an environment similar to dust (hence the name).
[Image: friction3.jpg]
A mite, less than 1 mm in size, approaching a microscale gear chain. (Image: Sandia National Laboratories)
Each mote can be left unattended to collect environmental data such as light, temperature, pressure, vibrations, the existence of toxins, etc., and transmit this data wirelessly to larger, remote computer systems – or, depending on the mote's computing power, processes it directly at the point of data collection.
For instance, in an industrial setting, smart dust sensors relay signals back to a command computer, which then compiles the data to give feedback to plant managers. Or the results could trigger an automatic response, such as turning down a building's temperature or reducing the flow of water.
Another example is DARPA's SHIELD program that plans to use microscale chips to track and authenticate the supply chain of computer chips for defense applications. The goal is to eliminate counterfeit integrated circuits from the electronics supply chain by making counterfeiting too complex and time-consuming to be cost effective. SHIELD aims to combine NSA-level encryption, sensors, near-field power and communications into a tiny chip capable of being inserted into the packaging of an integrated circuit.

See linked article for the rest !
https://news.berkeley.edu/2016/08/03/spr...ceuticals/
Quote:Sprinkling of neural dust opens door to electroceuticals

UC Berkeley engineers have built the first dust-sized, wireless sensors that can be implanted in the body, bringing closer the day when a Fitbit-like device could monitor internal nerves, muscles or organs in real time.
Wireless, batteryless implantable sensors could improve brain control of prosthetics, avoiding wires that go through the skull. (UC Berkeley video by Roxanne Makasdjian and Stephen McNally)
Because these batteryless sensors could also be used to stimulate nerves and muscles, the technology also opens the door to “electroceuticals” to treat disorders such as epilepsy or to stimulate the immune system or tamp down inflammation.
The so-called neural dust, which the team implanted in the muscles and peripheral nerves of rats, is unique in that ultrasound is used both to power and read out the measurements. Ultrasound technology is already well-developed for hospital use, and ultrasound vibrations can penetrate nearly anywhere in the body, unlike radio waves, the researchers say.
“I think the long-term prospects for neural dust are not only within nerves and the brain, but much broader,“ said Michel Maharbiz, an associate professor of electrical engineering and computer sciences and one of the study’s two main authors. “Having access to in-body telemetry has never been possible because there has been no way to put something supertiny superdeep. But now I can take a speck of nothing and park it next to a nerve or organ, your GI tract or a muscle, and read out the data.“
[Image: nervemote750-410x273.jpg]
The sensor, 3 millimeters long and 1×1 millimeters in cross section, attached to a nerve fiber in a rat. Once implanted, the batteryless sensor is powered and the data read out by ultrasound. (Ryan Neely photo)
Maharbiz, neuroscientist Jose Carmena, a professor of electrical engineering and computer sciences and a member of the Helen Wills Neuroscience Institute, and their colleagues will report their findings in the August 3 issue of the journal Neuron.
The sensors, which the researchers have already shrunk to a 1 millimeter cube – about the size of a large grain of sand – contain a piezoelectric crystal that converts ultrasound vibrations from outside the body into electricity to power a tiny, on-board transistor that is in contact with a nerve or muscle fiber. A voltage spike in the fiber alters the circuit and the vibration of the crystal, which changes the echo detected by the ultrasound receiver, typically the same device that generates the vibrations. The slight change, called backscatter, allows them to determine the voltage.
Motes sprinkled thoughout the body

In their experiment, the UC Berkeley team powered up the passive sensors every 100 microseconds with six 540-nanosecond ultrasound pulses, which gave them a continual, real-time readout. They coated the first-generation motes – 3 millimeters long, 1 millimeter high and 4/5 millimeter thick – with surgical-grade epoxy, but they are currently building motes from biocompatible thin films which would potentially last in the body without degradation for a decade or more.
[Image: fingertipmote750-410x273.jpg]
The sensor mote contains a piezoelectric crystal (silver cube) plus a simple electronic circuit that responds to the voltage across two electrodes to alter the backscatter from ultrasound pulses produced by a transducer outside the body. The voltage across the electrodes can be determined by analyzing the ultrasound backscatter. (Ryan Neely photo)
While the experiments so far have involved the peripheral nervous system and muscles, the neural dust motes could work equally well in the central nervous system and brain to control prosthetics, the researchers say. Today’s implantable electrodes degrade within 1 to 2 years, and all connect to wires that pass through holes in the skull. Wireless sensors – dozens to a hundred – could be sealed in, avoiding infection and unwanted movement of the electrodes.
“The original goal of the neural dust project was to imagine the next generation of brain-machine interfaces, and to make it a viable clinical technology,” said neuroscience graduate student Ryan Neely. “If a paraplegic wants to control a computer or a robotic arm, you would just implant this electrode in the brain and it would last essentially a lifetime.”

Again see Linked article for the rest !
Since this stuff is being reported on you gotta wonder what they really have that is even better at doing their bidding ?

Earlier tonight , I read something about the nanoteck and sensors, and they were using it in the pcr tests for covid. Can't find the exact article, but this was close. 

 https://innovativegenomics.org/projects/...infection/
The Truth is Out There, Somewhere
#3
@"kdog" 
Is this the article you were thinking of:
Quote:New Zealand Scientists Find Nanotech In Pfizer COVID Shots
[Image: rw19.png?w=400&ssl=1]
Once heated to body temperature looks like [Image: rw1.png?w=400&ssl=1]
Here in the bloodstream [Image: rw6.png?w=400&ssl=1]
Source

@"kdog" If this is not the article you were looking for, It is a good one to read.
Once A Rogue, Always A Rogue!
[Image: attachment.php?aid=936]
#4
I can think of entire worlds of abuse for such technology. It's a double edged sword in a salt-shaker.

.
Diogenes was eating bread and lentils for supper. He was seen by the philosopher Aristippus, who lived comfortably by flattering the king.

Said Aristippus, ‘If you would learn to be subservient to the king you would not have to live on lentils.’ Said Diogenes, ‘Learn to live on lentils and you will not have to be subservient to the king.’


#5
(02-07-2022, 09:11 PM)Ninurta Wrote: I can think of entire worlds of abuse for such technology. It's a double edged sword in a salt-shaker.

.

"They" want to force a trans-human agenda, our wishes be damned.

Cheers
[Image: 14sigsepia.jpg]

Location: The lost world, Elsewhen
#6
What is the life span of this dust and does it self replicate?
How hardy is it in real life applications (as in humidity, operating temps, UV exposure, etc.)?
How is this nano tech subverted or disabled?

I'd like to think something like an RF signal could fry them and enable them inert. Maybe some kind of food supplements could flush them from the body, but what about the clouds that fallout over the landscape? We might need a bio-dome and stay entirely separated from the outside environment if this gets out of control.

Mars is looking better everyday.

ETA: Wasn't Morgellons disease thought to be nano-tech?

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5072536/
#7
@"Michigan Swamp Buck" 
Quote:ETA: Wasn't Morgellons disease thought to be nano-tech?

Yes it was or is.
Thought to be a side effect in some people from getting childhood inoculations or from receiving the inoculations for Military Service.
JMHO
Once A Rogue, Always A Rogue!
[Image: attachment.php?aid=936]


Forum Jump:


Users browsing this thread: 1 Guest(s)